Exercise 23

Solve the differential equation using the method of variation of parameters.

$$
y^{\prime \prime}+y=\sec ^{2} x, \quad 0<x<\pi / 2
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}+y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}+e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+1=0
$$

Solve for r.

$$
r=\{-i, i\}
$$

Two solutions to the ODE are $e^{-i x}$ and $e^{i x}$. By the principle of superposition, then,

$$
\begin{aligned}
y_{c}(x) & =C_{1} e^{-i x}+C_{2} e^{i x} \\
& =C_{1}(\cos x-i \sin x)+C_{2}(\cos x+i \sin x) \\
& =\left(C_{1}+C_{2}\right) \cos x+\left(-i C_{1}+i C_{2}\right) \sin x \\
& =C_{3} \cos x+C_{4} \sin x .
\end{aligned}
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
y_{p}^{\prime \prime}+y_{p}=\sec ^{2} x \tag{2}
\end{equation*}
$$

In order to obtain a particular solution, use the method of variation of parameters: Allow the parameters in the complementary solution to vary.

$$
y_{p}=C_{3}(x) \cos x+C_{4}(x) \sin x
$$

Differentiate it with respect to x.

$$
y_{p}^{\prime}=C_{3}^{\prime}(x) \cos x+C_{4}^{\prime}(x) \sin x-C_{3}(x) \sin x+C_{4}(x) \cos x
$$

If we set

$$
\begin{equation*}
C_{3}^{\prime}(x) \cos x+C_{4}^{\prime}(x) \sin x=0 \tag{3}
\end{equation*}
$$

then

$$
y_{p}^{\prime}=-C_{3}(x) \sin x+C_{4}(x) \cos x .
$$

Differentiate it with respect to x once more.

$$
y_{p}^{\prime \prime}=-C_{3}^{\prime}(x) \sin x+C_{4}^{\prime}(x) \cos x-C_{3}(x) \cos x-C_{4}(x) \sin x
$$

Substitute these formulas into equation (2).

$$
\left[-C_{3}^{\prime}(x) \sin x+C_{4}^{\prime}(x) \cos x-C_{3}(x) \cos x-C_{4}(x) \sin x\right]+\left[C_{3}(x) \cos x+C_{4}(x) \sin x\right]=\sec ^{2} x
$$

Simplify the result.

$$
\begin{equation*}
-C_{3}^{\prime}(x) \sin x+C_{4}^{\prime}(x) \cos x=\sec ^{2} x \tag{4}
\end{equation*}
$$

Multiply both sides of equation (3) by $\sin x$, and multiply both sides of equation (4) by $\cos x$.

$$
\begin{aligned}
C_{3}^{\prime}(x) \cos x \sin x+C_{4}^{\prime}(x) \sin ^{2} x & =0 \\
-C_{3}^{\prime}(x) \cos x \sin x+C_{4}^{\prime}(x) \cos ^{2} x & =\sec x
\end{aligned}
$$

Add the respective sides of these equations to eliminate $C_{3}^{\prime}(x)$.

$$
C_{4}^{\prime}(x)=\sec x
$$

Integrate this result to get $C_{4}(x)$, setting the integration constant to zero.

$$
C_{4}(x)=\ln |\sec x+\tan x|
$$

The absolute value can be dropped since $0<x<\pi / 2$. Multiply both sides of equation (3) by $\cos x$, and multiply both sides of equation (4) by $-\sin x$.

$$
\begin{aligned}
& C_{3}^{\prime}(x) \cos ^{2} x+C_{4}^{\prime}(x) \cos x \sin x=0 \\
& C_{3}^{\prime}(x) \sin ^{2} x-C_{4}^{\prime}(x) \cos x \sin x=-\sec ^{2} x \sin x
\end{aligned}
$$

Add the respective sides of these equations to eliminate $C_{4}^{\prime}(x)$.

$$
C_{3}^{\prime}(x)=-\sec ^{2} x \sin x
$$

Integrate this result to get $C_{3}(x)$, setting the integration constant to zero.

$$
\begin{aligned}
C_{3}(x) & =\int^{x} C_{3}^{\prime}(w) d w \\
& =-\int^{x} \frac{\sin w}{\cos ^{2} w} d w \\
& =\int^{\cos x} \frac{d u}{u^{2}} \\
& =\left.\left(-\frac{1}{u}\right)\right|^{\cos x} \\
& =-\frac{1}{\cos x}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
y_{p} & =C_{3}(x) \cos x+C_{4}(x) \sin x \\
& =\left(-\frac{1}{\cos x}\right) \cos x+\ln (\sec x+\tan x) \sin x \\
& =-1+\ln (\sec x+\tan x) \sin x,
\end{aligned}
$$

and the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{3} \cos x+C_{4} \sin x-1+\ln (\sec x+\tan x) \sin x
\end{aligned}
$$

where C_{3} and C_{4} are arbitrary constants.

